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Abstract
Systems of nonlinear ordinary differential equations are constructed, for which
the general solution is algebraically expressed in terms of a finite number of
particular solutions. Expressions of that type are called nonlinear superposition
formulae. These systems are connected with local Lie group transformations
on their homogeneous spaces. In the work presented here, the nonlinear
superposition formulae are constructed for the case of the SO(3, 2) group and
some aspects of the general case of SO(n + 1, n) are studied.
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Mathematics Subject Classification: 17B37, 16W30, 81R50

1. Introduction

Nonlinear phenomena are taking on more and more importance in almost all branches of
science—and especially in physics. However, in general, systems of nonlinear differential
equations describing these phenomena are not practically solvable. Among the most important,
at least partially solvable systems of nonlinear equations are those for which a general solution
can be obtained from a finite set of particular known solutions—in other words, for which
the superposition formulae are valid. These systems of nonlinear equations are connected
with Lie groups and their action on homogeneous spaces. The best-known example is the
Riccati equation which is connected with the Lie group SL(2). Equations of this type were
classified in [1] and explicitly found for SL(n) in [2], and for the complex symplectic group
in [3]. Another problem is that of finding the corresponding superposition formulae for these
equations. These problems have been solved for the particular cases of equations connected
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with the Lie groups SL(n), in [4–8], SP (2n), in [4], and SO(n, n), in [9]—that is, for the
Lie groups of the type An, Cn and Dn. Our aim is to find the superposition formulae for the
Lie group Bn, and in particular for B2. It was shown in [1] that the nonlinear structures of
the systems of equations connected with the Lie groups SO(p, q) are usually polynomials of
degree 4. The exception is SO(n+ 1, n). In this case, the nonlinear structures are polynomials
of degree 2. In this paper, we restrict consideration to this simple case.

In general, the systems of nonlinear equations connected with the Lie groups, including
pseudo-orthogonal groups, occur in many physical applications such as in Bäcklund
transformations in the study of integrable systems, as special cases of Volterra–Lotke equations
in population dynamics, in optimal control theory, in chaos, in symplectic optics and elsewhere
[10–15]. Therefore, the superposition formulae are interesting from both the mathematical and
physical points of view.

Let us start with a brief formulation of our problem. Consider a system of n first-order
differential equations:

ẋµ(t) = χµ(x1, x2, . . . , xn, t) µ = 1, . . . , n (1)

where the dot denotes differentiation of xµ(t) with respect to time t . It has been known for a
very long time that in some cases, which we will be specified later, it is possible to express the
general solution as a nonlinear function of a finite number of particular solutions; it is of the
form

x = F (x1,x2, . . . ,xm, c1, . . . , cs) x ∈ Rn (2)

where x1, . . . ,xm are the particular solutions (1), c1, c2, . . . , cs are arbitrary constants and
x(t) is the general solution. These relations are called nonlinear superposition formulae. Here
x means a vector with elements x1, x2, . . . , xn.

An example of such systems is a homogeneous system of the first-order linear differential
equations, in which the general solution is expressed as a linear combination of n linearly
independent particular solutions. The other known example is the Riccati equation

ẋ = a(t) + b(t)x + c(t)x2 (3)

where a(t), b(t), c(t) are continuous differentiable functions with respect to t . In this case,
for any four solutions xi(t), i = 1, . . . , 4, the relation

x1(t) − x3(t)

x1(t) − x4(t)

x2(t) − x4(t)

x2(t) − x3(t)
= u1 − u3

u1 − u4

u2 − u4

u2 − u3
(4)

where xi(0) = ui are initial conditions, is valid.
In the general case, such systems of differential equations are connected with the local

Lie group G of transformations on the factor space M = G/G0, where G0 is a Lie subalgebra
of G [16]. We recall this connection briefly.

By the local Lie group G of transformations on M , we understand a smooth mapping
ϕ : G × M → M (we use the abbreviation ϕ(g, u) = g · u), for which

(a) e · u = u, for any u ∈ M , where e is the unit element of the group G,
(b) for any two elements g1, g2 ∈ G and any u ∈ M , we have g2 · (g1 · u) = (g2g1) · u and
(c) g · u = u for any u ∈ M implies g = e [17].

In the local coordinate system, we write x = g · u as

xµ = f µ(a1, . . . , aN , u1, . . . , un) µ = 1, . . . , n (5)

where N is the dimension of the group G and ar , r = 1, . . . , N , are their local coordinates.
For xµ(a,u), we can write

∂xµ

∂ar
=

N∑
s=1

ξµ
s (x)vs

r (a) (6)
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where the vector fields

Xs(x) = −
n∑

µ=1

ξµ
s (x)

∂

∂xµ

obey the equations

[Xr,Xs] =
N∑
t=1

ctrsXt

in which ctrs are the structure constants of the Lie algebra of the group G.
Conversely, the vector fields Xk(x) uniquely determine the infinitesimal action of the local

Lie group on the space M [17].
Let g(t) = (a1(t), . . . , aN(t)), t ∈ R, be a curve in the Lie group G such that g(0) = e.

This gives a curve in the space M . Differentiation of equation (5) with respect to the parameter
t gives, using (6), the system of differential equations

ẋµ =
N∑

r=1

ξµ
r (x)Zr(t) µ = 1, . . . , n. (7)

In this paper we will deal with systems of this kind, connected with the Lie group SO(n+1, n).
If the system of equations (1) has the form (7), then there is a curve in some local

coordinates of the Lie group G, which acts on the factor space M . In this case, it is possible to
find the superposition formula [16]. Any particular solution of the system (7) can be written
in the form

xk(t) = g(t) · uk (8)

where uk = xk(0) is the initial condition.
We express the action of the local group G by using the action of this group on a few points

of the space M , which is assumed known. In principle, this means finding the coordinates of
the group ai from the system of equations

x1 = f(a1, . . . , aN ,u1)

x2 = f(a1, . . . , aN ,u2)

· · ·
xr = f(a1, . . . , aN ,ur ).

(9)

To find the group coordinates ai , i = 1, . . . , N , we should use the action of r points. It is
evident that the number r must fulfil the inequality nr � N , where n is the dimension of M
and N is the dimension of the group G.

If we solve this problem, then we are able to express the elements of the Lie group G by
means of the known transformations of the r points in the form

g = g(x1,x2, . . . ,xr ,u1,u2, . . . ,ur ); (10)

therefore,

x = g(x1, . . . ,xr ,u1, . . . ,ur ) · u (11)

holds. Now we see that formula (11) is invariant with respect to the action of the local group G.
If xi (t), i = 1, . . . , r , are the known solutions of the system (7) for given functions Zr(t),

then any other solution x(t) of that system is given by (11). Therefore, relation (11) is the
superposition formula [16].
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For example, the Riccati equation (3) is connected with the Lie group G = SL(2) that
acts on the space M as follows:

g(t) · u = x(t) = a21(t) + ua22(t)

a11(t) + ua12(t)

where we represented the elements of the group G by the matrix(
a11 a12

a21 a22

)
with the determinant equal to 1.

In the 1980s, there were a lot of papers [4–9] which were devoted to systems of differential
equations of this type and especially to finding the superposition formulae for these systems.
For the most part, the authors studied the systems connected with Lie groups SL(n,R) or
SL(n,C). In the general paper [16], techniques used for constructing the superposition
formulae were described. They are demonstrated using examples, in which the Lie groups
SL(n,R) and O(p + 1, n − p + 1) act on simple projective spaces.

In [4], the more general cases of the projective-matrix Riccati equation are studied for
SL(2n,R) and SP (2n,R). In paper [5], the systems that arise from the action of SL(n,C) on
the factor spaces SL(n,C)/O(n,C) and SL(2n,C)/SP (2n,C) are studied. The paper [6] is
devoted to the superposition formulae for the rectangular-matrix Riccati equations on the space
SL(n + k,C)/P (k), where P(k) are special maximal parabolic subgroups of SL(n + k,C).
In [7], the authors deal with systems connected with the Lie group SU(n, n) and, in [9],
the same method is used for SO(n, n). Finally, in the paper [8], the authors study the
systems of equations that are connected with the action of the Lie group SL(n,C) on the
space M = SL(n,C)/G0, where G0 is a special non-maximal parabolic subgroup.

The authors mostly used a set of special solutions for reconstructing the group action on
the space M . This approach simplifies the solution of (9). On the other hand, we are not able
to use the resulting superposition formulae directly for constructing the solution of the system
on the basis of any set of particular solutions. By means of the action of group elements,
we must first transform our particular solutions to a special set of particular solutions used in
superposition formulae.

In the next section, we study the systems of equations (7) which are connected with the
action of the Lie group SO(n+ 1, n) on the space M = SO(n+ 1, n)/P , where P is one of the
maximal parabolic subgroups. To our knowledge, systems of this type have not been studied
so far. Unlike the authors of the papers cited above, we do not choose a special set of particular
solutions for reconstructing the group action on M , or, in the terminology of paper [16], we
construct group invariants which give nonlinear superposition formulae in implicit form.

2. Lie group SO(n + 1, n) and its Lie algebra

In this section, we set up the notation. The Lie group SO(n + 1, n) is a group of real matrices
G with dimension (2n + 1) × (2n + 1) that fulfil the equations

GT · σ · G = σ where σ =
( 1 0 0

0 0 I

0 I 0

)
(12)

GT denotes a transposed matrix and I is a unit matrix with dimension n × n.
Matrix G is written in the form

G =
(
g11 gT

12 gT
13

g21 G22 G23

g31 G32 G33

)
(13)
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where g denotes a column vector and gT is its transpose represented as row vector. Therefore
ggT is an n × n matrix and gTg is an inner product.

If we insert (13) into (12) we obtain the following formulae for elements of the matrix G:

g2
11 + gT

21g31 + gT
31g21 = 1

g11g12 + GT
22g31 + GT

32g21 = 0

g11g13 + GT
23g31 + GT

33g21 = 0

g12g
T
12 + GT

22G32 + GT
32G22 = 0

g13g
T
13 + GT

23G33 + GT
33G23 = 0

g12g
T
13 + GT

22G33 + GT
32G23 = I.

(14)

In this realization, the Lie algebra so(n + 1, n) is given by real matrices:

A =
( 0 xT zT

−z H W

−x Y −HT

)

where W T = −W and Y T = −Y .
In the group SO(n + 1, n), we take a subgroup G0 that is generated by the matrices

G0 =
( 1 0 0

0 D 0
0 0 (DT)−1

)( 1 0 zT

−z I Z

0 0 I

)

where the equality Z + ZT + zzT = 0 holds. The factor space M = G/G0 can be represented
by the matrices

- =
( 1 xT 0

0 I 0
−x X I

)

where X + XT + xxT = 0. As coordinates on M , we choose x and the antisymmetric part of
the matrix X; this means that

Y = X + 1
2xxT. (15)

The action of the group G on the factor space M in these coordinates can be obtained from the
equation(
g11 gT

12 gT
13

g21 G22 G23

g31 G32 G33

)( 1 uT 0
0 I 0

−u U I

)

=
( 1 xT 0

0 I 0
−x X I

)( 1 0 0
0 D 0
0 0 (DT)−1

)( 1 0 zT

−z I Z

0 0 I

)
.

If we compare the coefficients on either side of this equation, we obtain the following formulae:

D = G22 + g21u
T + G23U

x = (DT)−1(g12 + g11u + UTg13)

X = (G32 + g31u
T + G33U)D−1

(16)

for the group elements. Because we restrict consideration to the local Lie group, we can
suppose that matrix D is invertible.

Starting with the action of this group on the space M and using the expansion to first order,
we derive an explicit expression for the vector fields, in the basis of the algebra so(n + 1, n) in
the representation (Tgf )(m) = f (g−1 · m). Specifically we get
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Yij �→ − ∂

∂Yij

xi �→ − ∂

∂xi

− 1

2

n∑
r=1

xr

∂

∂Yri

Dij �→ xj

∂

∂xi

−
n∑

r=1

Yir

∂

∂Yrj

zi �→ −
n∑

r=1

(
Yir +

xixr

2

)
∂

∂xr

− 1

2

n∑
r,s=1

Yrixs

∂

∂Yrs

Wij �→
n∑

r=1

(xjYri − xiYrj )
∂

∂xr

−
n∑

r,s=1

YirYjs

∂

∂Yrs

where we define Yrs = −Ysr .
The system of differential equations (7) is in this case of the form

ẋ(t) = a(t) − B(t)x − Y c(t) + 1
2xcT(t)x − Y C(t)x

Ẏ (t) = A(t) + 1
2 (xaT(t) − a(t)xT) − (Y B(t) + BT(t)Y )

+ 1
2 (Y c(t)xT + xcT(t)Y ) − Y C(t)Y

(17)

where a(t) and c(t) are vector functions differentiable with respect to t ; A(t), B(t) and C(t)

are differentiable matrix functions, for which AT = −A, CT = −C and Y T = −Y .
This system of differential equation is the same as in the paper [1], where a classification

of all systems of nonlinear ordinary differential equations of this type is given.

3. Representations of the action of the group by means of particular solutions

The system of equations (17) arises from the action of the Lie group SO(n+ 1, n) on the factor
space M = SO(n + 1, n)/G0. Therefore, one can find the superposition formula. The action
of the group SO(n+ 1, n) on the space M is given by the relations (16). We try to express this
action by means of any known solutions xk = g · uk . If xk(t) are solutions of the differential
equations (17) with the initial conditions xk(0) = uk , we obtain the general solution x(t) with
the initial condition x(0) = u in the form

x(t) = G(x1(t), . . . ,xr (t),u1, . . . ,ur ) · u

where g(x1(t), . . . ,xr (t),u1, . . . ,ur ) = g(t) is the expression for an element of the group
G in terms of the known transformation.

The dimension of the group SO(n + 1, n) is equal to n(2n + 1) and the dimension of the
space M = SO(n + 1, n)/G0 is n(n + 1)/2. So, to express the N coordinates of the group
elements by using the known solutions, we must know at least r solutions, where r fulfils the
inequality n(2n + 1) � [n(n + 1)/2]r . Consequently, for n = 1, it is sufficient to known three
particular solutions, and for n > 1, we must know at least four particular solutions of the
system (17).

By xi we denote a vector, and by Xi = Yi − 1
2xix

T
i we denote a matrix for and ith

solution of the system of differential equations (17) with initial conditions ui and Ui ; Di is
an invertible matrix defined to provide an appropriate solution of the first equation in (16).
Further, we use the notation uik = ui − uk , xik = xi − xk . Similarly, we define Xik and Uik .
Temporarily, we suppose that all matrices which we will use in our calculations are invertible.



Nonlinear superposition formulae based on the Lie group SO(n + 1, n) 2437

From equation (16) we obtain some coordinates of elements of the group G. Readily we
discover that for indices i and k, the relations

g13 = (UT
ik)

−1 · (DT
i xi − DT

k xk − g11uik)

G23 = (Di − Dk − g21u
T
ik) · U−1

ik

G33 = (XiDi − XkDk − g31u
T
ik) · U−1

ik

g12 = DT
i xi − g11ui − UT

i g13

G22 = Di − g21u
T
i − G23Ui

G32 = XiDi − g31u
T
i − G33Ui

are valid. If we now apply these equations to (14), after some simple algebra we obtain the
following formulae:

g2
11 + gT

21g31 + gT
31g21 = 1

DT
i · (g11xi + g31 + XT

i g21) = ui

DT
i · (xix

T
k + XT

i + Xk) · Dk = uiu
T
k + UT

i + Uk.

(18)

Using the second equation in (18) we can write

g21 = −(XT
ik)

−1[g11xi − (DT
i )

−1ui] − (XT
ki)

−1[g11xk − (DT
k )

−1uk]

g31 = XT
k (X

T
ik)

−1[g11xi − (DT
i )

−1ui] + XT
i (X

T
ki)

−1[g11xk − (DT
k )

−1uk].
(19)

Next we use the notation

4ik = xix
T
k + XT

i + Xk

ωik = uiu
T
k + UT

i + Uk

hi = g11xi − (DT
i )

−1ui .

(20)

It is easy to see that the relations

xix
T
k + 4ik + 4ki = 0 4T

ik = 4ki

uiu
T
k + ωik + ωki = 0 ωT

ik = ωki

are valid. By simple algebraic calculations, from equations (18) and (19) for any i, j and k,
we derive the following formulae:

DT
i 4ikDk = ωik (21)

hk + XT
jk · (XT

ij )
−1hi + XT

ik · (XT
ji)

−1hj = 0 (22)

g2
11 + [hT

k X−1
ik xk + hT

k X−1
ki xi] · [xT

k (X
T
ik)

−1hi + xT
i (X

T
ki)

−1hk]

− hT
i X−1

ik 4ik(X
T
ki)

−1hk − hT
k X−1

ki 4ki(X
T
ik)

−1hi = 1. (23)

We have found the system of equations from which it is possible to determine the matrix (13).
Since we restricted consideration to the neighbourhood of the point t = 0, we can suppose
that matrices Di (t) are invertible. From the relation (21) it follows that in this neighbourhood
the matrices 4ik(k) and ωki are simultaneously invertible or non-invertible. So, it is easy to
see that, if matrix ωik is invertible, it is enough to know only one solution of this system, Di ,
for one value of i. We can find the other Dk from equation (21). If we know Di explicitly,
equation (23) is a quadratic equation with respect to g11. The odd equations can then give the
matrices Di .

We summarize the above in terms of the following theorem.

Theorem. Let xi (t) and Yi (t), i = 1, 2, 3, be three solutions of equation (17), Xi (t) =
Yi (t) − 1

2xix
T
i , ui = xi (0), Ui = Xi (0) and let the matrices Uik be invertible. Then, there
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are a neighbourhood of the point t = 0, matrices Di (t), i = 1, 2, 3, Di (0) = I, and a function
g11(t), g11(0) = 1, for which formulae (21), (22), and (23) are true.

4. The superposition formulae

In the previous sections, we formulated conditions (21)–(23) that are valid for any three
solutions of the system (17). Although we are not able to solve the system (21)–(23) explicitly,
it is possible to derive, from them, certain relations for solutions of the system of differential
equations.

We suppose that we have five solutions of this system, and there exists a matrix inverse to
ωik for any i 	= k, i, k = 1, . . . , 5. Then from equation (21), we obtain

D−1
k 4−1

rk (D
T
r )

−1 = ω−1
rk .

If we now multiply equation (21) by this equation from the left, and then by (21) from the left,
for the couple (ri), we obtain the equation

DT
i 4ik4

−1
rk 4riDi = ωikω

−1
rk ωri (24)

which is true for any i, k and r . We multiply this equation further from the right by the inverse
equation (24) for the triple (sti). Then, we obtain

D−1
i 4−1

t i 4ts4
−1
is 4ik4

−1
rk 4riDi = ω−1

t i ωtsω
−1
is ωikω

−1
rk ωri

which is true for any (ikrst). If now we put s = k in this equation, we obtain, for any four
solutions of (17), the relation

D−1
i 4−1

si 4sk4
−1
rk 4riDi = ω−1

si ωskω
−1
rk ωri . (25)

This means that the matrices 4−1
si 4sk4

−1
rk 4ri and ω−1

si ωskω
−1
rk ωri are similar. Therefore, all

their invariants are identical.
Now, we will use this interesting property of the solution of differential equations (17) to

obtain superposition formulae of the system (17) for small n.
For n = 1 we get the Lie group SO(2, 1). In this case, the vector x is reduced to the

number x, and Y = 0. From this we have Xi = − 1
2x

2
i and 4ik = − 1

2 (xi − xk)
2. In this case,

equation (25) has, after the extraction, the form
xs − xk

xs − xi

xr − xi

xr − xk

= us − uk

xu − ui

ur − ui

ur − uk

.

This represents the well-known superposition formula (4) for the Riccati equation (3). This is
a consequence of the isomorphism between so(2, 1) and sl(2).

Now, we will study the case n = 2—that is, the Lie group SO(3, 2). In this case, we have

Y =
(

0 x3

−x3 0

)
X = 1

2

( −x2
1 −x1x2 + 2x3

−x1x2 − 2x3 −x2
2

)
.

If we denote the components of the ith solution by x
(i)
1 , x(i)

2 and x
(i)
3 , we obtain

det(Uik) = 1
4 (4(u

(i)
3 − u

(k)
3 )2 − (u

(i)
2 u

(k)
1 − u

(i)
1 u

(k)
2 )2)

and the determinants of the matrices 4ik and ωik are

det(4ik) = 1
47

2
ik det(ωik) = 1

4δ
2
ik (26)

where

7ik = 2x(i)
3 − 2x(k)

3 + x
(i)
2 x

(k)
1 − x

(i)
1 x

(k)
2

δik = 2u(i)
3 − 2u(k)

3 + u
(i)
2 u

(k)
1 − u

(i)
1 u

(k)
2 .
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We see that the conditions for the matrices Uik to be invertible imply the invertibility of matrices
ωik .

If we now take the determinant in equation (25) we obtain for any four different solutions
the equality

7sk

7si

7ri

7rk

= δsk

δsi

δri

δrk
. (27)

As was mentioned above, in this case, we can construct the general solution of the system (17)
by using four particular solutions. Take now five solutions, for which from (27) we obtain
independent equations

724

714

713

723
= δ24

δ14

δ13

δ23

734

714

712

723
= δ34

δ14

δ12

δ23
(28)

725

715

713

723
= δ25

δ15

δ13

δ23

735

715

712

723
= δ35

δ15

δ12

δ23

745

715

712

724
= δ45

δ15

δ12

δ24
. (29)

Equations (29) are understood as a system of linear equations for x(5)
1 , x(5)

2 and x
(5)
3 . This

system has a solution when its determinant D(t) is different from zero. By direct calculation
for t = 0, we obtain

D(0) = (δ15 − δ25)(δ13 − δ14 + δ34) − (δ15 − δ35)(δ12 − δ14 + δ24)

+ (δ15 − δ45)(δ12 − δ13 + δ23). (30)

The terms in the second parentheses do not depend on u
(i)
3 and are not identical zero. Because

the terms in the first parentheses depend on u
(i)
3 −u

(k)
3 , this determinant is not identical zero for

any possible initial conditions ui and Ui . As the determinant D(t) is given by the solutions
of system (17) which are continuous and D(0) 	= 0, there is any neighbourhood of t = 0
in which the determinant D(t) 	= 0. We see that, in this neighbourhood, we can determine,
from the system of equations (29), the solutions x(5)

1 , x(5)
2 and x

(5)
3 of the system of differential

equations (17) by using the particular solution xi , Yi for i = 1, . . . , 4. In other words,
formulae (27) give the implicit form of the nonlinear superposition formulae for the system of
differential equations (17) which is connected with the action of the Lie group SO(3, 2) on
space M .

Comments. Equations (28) imply that the four solutions are not fully independent. For
example, if we know three solutions xi , Yi , i = 1, 2, 3, and from the fourth we know x

(4)
3 , we

can obtain x
(4)
1 and x

(4)
2 from (28). This is a consequence of the fact that the reconstruction of

the action of the group requires only ten independent functions.

5. Conclusions

The main results of this paper are the following:

(1) We constructed systems of first-order ordinary differential equations that arise from
the infinitesimal action of the local Lie group SO(n + 1, n) on the factor space M =
SO(n + 1, n)/P , where P is one of the maximal parabolic subgroups of SO(n + 1, n).
These systems allow a superposition formula.

(2) We found all sets of invariants for these systems which are expressed in terms of the
solutions. These are invariants of the matrices 4ik . The matrices 4ik play, in our case, a
similar role to the matrix anharmonic ratio for projective-matrix Riccati equations in [4].
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(3) In the case of SO(3, 2), we proved that, from these invariants, it is possible to find the
general solution of our system on the basis of four particular solutions. Therefore, in this
case, this set of invariants gives an implicit nonlinear superposition formula. It is necessary
to note that, even though the local groups SO(3, 2) and SP (4,R) are isomorphic, our
system of differential equations differs from the one studied in [4] for the Lie group
SP (4,R), because we use another maximal parabolic subgroup for constructing the
space M .
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